Coherent Microwave Synchrotron Radiation in the VUV Ring

S.L. Kramer, G.L. Carr, B. Podobedov and J.B. Murphy BNL/NSLS Upton, NY 11973

Content:

- Detection of microwave beam signals 3 to 75 GHz
- CSR above and below shielding cut-off frequency
- Wakefield generation as signal source above waveguide cut-off
- Wakefield as source of CSR above shielding cut-off frequency
- Potential for steady state CSR ~100GHz to THz

Layout of Microwave & FIR Beams

U12IR Beam to FIR Spectrometer

Microwave Detection

- Horn antenna collector to standard waveguide with length >6X attenuation length (HPF)
- •LPF for TE0,1 band selection yields linear E-field polarization
- •RF spectrum analyzer with pre-selection filter
- •Diode detectors for fast peak power measurements
- •Diode and Thermocouple power detectors for reliable average power measurements

Microwave Signals from Beam

- •RF spectrum analysis of 7 waveguide bands & FIR
- •Observe 3 major peaks: A(5-8GHz), B(20-28GHz), C(42-50GHz)

Synchrotron Radiation Shielding

•EM Shielding due to vacuum chamber cut-off frequency:

$$f_c \cup \frac{c}{2} \sqrt{\frac{\rho}{h^3}}$$

 ρ = bend radius, h = vacuum chamber full height $f_c \sim 24.1$ GHz for VUV Ring

- Coherent A peak is major disagreement for shielding
- Coherent B peak shows cut-off shifts peak 15->24GHz in agreement with shielding cut-off frequency

Coherent Signal Power for A, B and C Peaks

 B and C are prompt signals from the bunch

A signal 60-80ns wide delayed by ~30-50ns from bunch

Average Power vs Current

- C signal linear below I_t
- C quadratic above I_t
- A signal never linear
- A quadratic above I_t

Above Threshold Power A,B and C

B and C peaks similar linear polarization in the bend plane

A Peak Shows Ex~Ey for all Io

B and C signals show well defined threshold current

The microwave threshold based on the Keil-SchnellCriterion

$$I_{th} \propto rac{lpha E_o \, \sigma_\delta^2 \, \sigma_t}{\mid Z_{\parallel} \, / \, n \mid}$$

and

$$\sigma_{\delta}^2 \propto E_o^2$$
 , $\frac{\sigma_t}{|Z/n|} \cup \mathbf{f(E,I)}$

C signal shows It = 103±2mA at Eo=737 MeV Injection Energy B signal similar but slower rise at lower energies

A Peak Induces Current Modulation above Threshold

Streak Camera bunch current measurement Triggered on large A peak signal

see B. Podobedov PAC'01, p.1921 (2001)

Synchrotron Radiation Power

$$P_{tot}(\omega) = N[1 + N f(\omega)]I_e(\omega) = P_{ISR}(\omega) + P_{CSR}(\omega)$$

where N= number of particles in the bunch

 $I_e(\omega)$ is the power spectrum for single electron

 $f(\omega)$ the form factor spectral power density

 $\frac{P_{CSR}(\omega)}{P_{ISR}(\omega)} = Nf(\omega) = G(\omega)$ the Gain or enhancement factor

For VUV bunch length $\sigma \sim 300 p \sec$, $G(\omega) << 1 \text{ for all N}$

for Io = 100mA, N = $1.06x10^{11}$

Form Factor for Measured Current Modulation

At 400mA, f(w) N ~4,000 compared to measured C signal enhancement of ~9,600

Time Structure of Power Bursts

- C always with A signal but A without C
- A peak leads and is longer than C signal
- HF bursts on C also on A but smaller dynamic range

Detailed Microwave and Current Signals

Microwave signal $\sim I(f) *Z_b(f)$

BPM signal $\sim I(f) * Z_p(f)$

Vacuum Bellows Shield in NSLS Rings

Longitudinal bellows for ABCI(2-D) with bunch shape used to calculate wakefields

Real Bellows shape for GdfidL (3-D)

Beam Impedance GdfidL & ABCI

Longitudinal bellows impedance by ABCI(2-D) TM_{0,1} f~5.5GHz GdfidL(3-D) TM_{1,1} f~4.0GHz

Transverse bellows impedance by ABCI(m=1) and GdfidL(y=2mm)

A Signal Below Threshold

- Amplified A
 peak at low
 current shows
 similar bursts
 but with less
 dynamic range
- Long. Damping increases A signal below I_t

A-Signal Driven by RF Noise

Real Time Spectral Anal. Of A-Band Detected signal

RF Plate noise at 720 Hz and harmonics

B-Signal shows similar bursts

Real Time Spectral Anal. Of B-Band Detected signal

B-Signal shows Time of bursts

Converted Time Window of Spectral Data

Shows
complexity of
bursts with time
structure
~0.2msec peaks

Real Time Spectral Anal. Of B-Band Detected signal

Harmonic CSR should be Broadband

At U12IR ISR shows dF~1/cm fringe pattern due reflection off vacuum chamber wall.

This should yield peak at 15 and 45 GHz and zero at 30 GHz, without shielding cut-off.

At U10IR dipole bend angle only 20deg. Not enough for this reflection.

G.L. Carr et.al. PAC'01,p.377 (2001)

FIR CSR Spectral Distribution-200GHz

Using different spectrometer shows higher peaks of this fringe pattern.

Spectra above shielding cut-off not identical in all beam lines

reflection interference
pattern as U12IR due to
lower bend angle
Also smaller vertical aperture
suppresses A signal but B
should not be affected.

Modulation at 50GHz for Stable CSR Emission

With stretched VUV Bunch only 50 Volts yields 20% modulation at 50 GHz

However Gain ∼1 at 200GHz

This is due to long bunches and its better to go to higher RF

Need shorter bunches to increase harmonic range, but this requires higher modulation voltage.

500MHz RF System for VUV

Fm=150GHz modulation on 500MHz Gaussian Bunch ot=17psec

Replacing 50MHz system with a 500MHz RF system could yield higher frequency CSR but requires higher voltage coupled to beam.

Assuming $f_m = 150GHz$ and 500V input, then $Io\sim10mA$ would give

 $N_e \cup 10^{10}$ e/bunch

and a Gain~200 up to 450GHz

Conclusions and Future Work

- A peak is wakefield from beam
 - Above threshold induces modulation on bunch current
- Modulation drives CSR for B and C
 - Higher frequency modulation in FIR
 - Peak structure from reflections
- FIR beam port yields HF beam properties and impedance for existing vacuum chamber

Conclusions and Future Work

- Driven modulation could yield higher frequency harmonics up to 4X Fm
- Lower voltages needed for 50 MHz RF system and narrower spectral distributions